

Project Lantern Data Sources
and Linking Mechanisms

Sponsor: Assistant Secretary for Technology
Policy/Office of the National Coordinator for
Health Information Technology (hereafter
ASTP)
Contract No.: 47QTCB21D0023
Project No.: 100905.10.100.1000.AA0

The views, opinions and/or findings contained
in this report are those of Mettle Solutions, LLC
and should not be construed as an official
government position, policy, or decision, unless
designated by other documentation.

Approved for Public Release; Distribution
Unlimited, Case 20-1740

©2025 Mettle Solutions, LLC.

All rights reserved.

Columbia, MD

Authors:

Matt Mayer

Emily Michaud

Brianna Mathiowetz

Prasad Konka (SVG, Inc.)

May 2025

 ii

 iii

Executive Summary
Lantern is an open-source tool developed by the Assistant Secretary for Technology
Policy/Office of the National Coordinator for Health Information Technology (hereafter ASTP)
and Mettle Solutions, LLC that monitors and provides analytics about the availability and
adoption of FHIR API service base URLs (endpoints) across healthcare organizations in the
United States. It also gathers information about FHIR Capability Statements returned by these
endpoints and provides visualizations to show FHIR adoption and patient data availability.
Lantern sources most of its data from publicly available endpoint and organization lists, though
some of the data is generated from the Lantern application itself. This document details the
publicly available data sources and explains the processes used to produce data by the Lantern
application.

 iv

Table of Contents

 Endpoint Data .. 1

 Developer Data... A-2

3 Software Product Data .. A-3

4 Data Validations .. A-3

5 Linking Mechanisms ... A-4

5.1 Linking Endpoints to Developers .. A-7

6 Query Intervals .. A-7

7 Endpoint Info History Pruning .. A-7

Appendix A Abbreviations and Acronyms .. A-1

 v

List of Tables

Table 1. Fields Parsed from the CHPL Developers List ... A-2

Table 2. Fields Parsed from the CHPL Products List ... A-3

Table 3. Validation Result Table Format .. A-3

Table 4. Base Validations ... A-3

Table 5. FHIR R4 Validations .. A-4

Table 6. Appendix Terms and Definitions .. A-1

 1

 Endpoint Data
The Lantern project uses publicly available endpoint lists to generate an aggregated list of FHIR
API endpoints. The majority of lists now come from the Certified Health IT Product List (CHPL)
by querying the /search API for g(10) certified products. Outside of CHPL, there are a few
publicly available lists that Lantern has included:

• CareEvolution (https://fhir.docs.careevolution.com/overview/public_endpoints.html)

• 1upHealth (https://1up.health/fhir-endpoint-directory)

• Medicaid state endpoint file

• Payer endpoints - Medicare has a patient access API similar to the EHR API; health plans
are required to provide these APIs similar to EHRs.

The minimum required information that needs to be included in endpoint lists is the FHIR
endpoint base URL. Most lists also include an organization name for each endpoint, and Lantern
will also parse zip code information from endpoint lists, if available.

The FHIR Capability Statements retrieved from these endpoints have the capacity to list software
names and versions. However, inclusion of this data is inconsistent and does not clearly map to
CHPL. If the list is from CHPL, the one or more software products associated with it are mapped
to the endpoints from the list. Furthermore, the FHIR Capability Statements do not have the
capacity to link the FHIR endpoint to an organization, so Lantern relies on the organization
names and other organization data reported by the FHIR endpoint list data sources to link a FHIR
endpoint with an organization. Details regarding the methods used to link endpoints to
organizations are included in Section 6.

 Developer Data
Developer data is parsed from the CHPL “/developers” API. Entries represent developers of
certified health IT software products. The table below includes the list of fields that Lantern uses;
additional fields can be found in CHPL’s documentation.

Table 1. Fields Parsed from the CHPL Developers List

Field Name Field Contents

id Unique ID used within CHPL to identify developer

developerCode Additional developer identification number

name Name of the developer

website URL of developer’s website

lastModifiedDate Date which the developer’s entry was last modified

status Indicates the active status of the developer

addressId Unique ID of the address entry within CHPL

line1 Developer address line 1

line2 Developer address line 2

city Developer address city

state Developer address state

zipcode Developer address zip code

about:blank#/resources/api
about:blank
about:blank
about:blank#/resources/api

 2

country Developer address country

 Software Product Data
Software product data is parsed from the CHPL “/search/v3” API. Software products returned at
this route represent certified health IT products that have been registered in the CHPL. The table
below includes the list of fields that Lantern uses; additional fields can be found in CHPL’s
documentation.

Table 2. Fields Parsed from the CHPL Products List

Field Name Field Contents

id The CHPL ID of the developer who makes this software product

edition The certification edition of this software product

product Name of the software product

version Version of the software product

chplProductNumber Unique string used by CHPL to identify this software product

certificationStatus Indicates if the software product is currently active

criteriaMet List of CHPL criteria which this software product meets

certificationDate Date that the software product was certified

practiceType A practice type (either Ambulatory or Inpatient)

developer The developer of the software product

apiDocumentation Information about the documentation for the product

 Data Validations
The Lantern system runs validations on the endpoints and stores the results in the validations
database table. Lantern will run the set of base validations against all endpoints and will run
FHIR version-specific validations depending on the version of FHIR advertised in the Capability
Statement.

Table 3. Validation Result Table Format

Field Name Field Contentsback

validation_result_id Database id referenced by the endpoint in the fhir_endpoints_info table

valid Indicates whether the actual value matched the expected value

actual The actual value as reported by the endpoint

comment Narrative explaining the validation

expected Value(s) that will result in a passed validation

rule_name Name of the validation

implementation_guide Reference to an implementation guide (if any) relevant to the validation

reference Link to relevant rule or standard that defines the expected value of the validation

Table 4. Base Validations

Validation Name Validation Description

capStatExist Asserts that a Capability Statement was returned by the endpoint

kindRule Asserts that the Capability Statement’s kind field has the value “instance”

about:blank#/resources/api
about:blank#/resources/api

 3

describeEndpointRule Asserts that Capability Statement includes a value for either the description,
software, or implementation fields

documentValidRule Asserts that if elements exist in the document field of the Capability
Statement, that the documents listed are unique when keyed by the
document.profile and document.mode fields

endpointFunctionRule Asserts that the Capability Statement includes at least one rest, messaging,
or document element

messagingEndptRule Asserts that if the Capability Statement’s kind field has the value “instance”,
then the messaging field should not be available

uniqueResourcesRule Asserts that the list of resources advertised in the Capability Statement’s rest
field does not contain duplicate resources

Table 5. FHIR R4 Validations

Validation Name Validation Description

patResourceExists Asserts that the Capability Statement advertises support of the Patient
resource

tlsVersion Asserts that TLS version 1.2 or higher is used during transmission

otherResourceExists Asserts that the Capability Statement advertises support for a resource in
addition to the Patient resource

smartResponse Asserts that the SMART Response resource is returned when querying the
/.well-known/smart-configuration endpoint

instanceRule Asserts that if the CapabilityStatement’s kind field has the value
“instance” then the instance field should be available

versionsResponseRule Asserts that the default FHIR version as specified by the $versions
operation should be returned from the server when no version is specified

searchParamsRule Asserts that the names of search parameters within a resource are unique to
said resource

 Linking Mechanisms

5.1 Linking Endpoints to Developers

Most of the endpoints in Lantern are from endpoint lists in CHPL, so the developer is already
associated with an endpoint list. Mapping in this case is simple since it is pulled from the CHPL
entry and saved to any endpoint in the developer’s list.

However, there are still lists in Lantern that are not from CHPL where the developer is not
included. In this case, Lantern links FHIR endpoints to developers using developer names
reported both in the publisher field of the Capability Statement and the CHPL developers list.

When a capability statement is received, the following matching steps are performed:

1. Normalize both the reported publisher from the Capability Statement and all of the CHPL
developer names by converting all names to lowercase and removing any of the
following words:

"inc.","inc","llc","corp.","corp","corporation","lmt","lmt.","limited","corporation."

Finish the normalization process by removing any trailing punctuation.

2. Iterate over the entire list of normalized developer names from the CHPL developers list.
If the normalized developer name is a substring of the publisher's name or vice versa,
then the developer is considered to be a match.

 4

 Query Intervals
Lantern queries its list of known FHIR endpoints once every 24 hours. Setting the query interval
to once every 24 hours means that over time Lantern will have queried each endpoint at exactly
same hour of the day. During each query Lantern records data from each endpoints’ Capability
Statement in addition to the HTTP response code and response time associated with the request
made to the endpoint.

 Endpoint Info History Pruning

The history pruning algorithm runs in parallel with the Capability Querier service, which
queries endpoints and updates both the fhir_endpoint_info database table and subsequently the
fhir_endpoint_info_history database table. The pruning algorithm first retrieves all distinct
FHIR endpoint URLs from the fhir_endpoint_info_history table and processes each URL
separately. For each URL, it examines entries that have entered_at dates older than the time
determined by subtracting the environment variable LANTERN_PRUNING_THRESHOLD
from the current time, and also have entered_at dates that are newer than a calculated lower
bound, which is typically the current time minus the pruning threshold minus 7200 minutes (5
days). This time window approach ensures that the algorithm does not repeat pruning checks on
the same entries after every query interval, but that it also does not miss any entries that have not
yet been pruned.

The pruning algorithm also leverages a metadata tracking system that records information about
each pruning operation in the info_history_pruning_metadata table. This allows the algorithm
to resume from where a previous operation left off if it was interrupted or failed, ensuring
complete processing of all eligible entries. The metadata system also tracks statistics such as the
number of rows processed and pruned during each operation.

With the new implementation of history triggers, the system now only creates history entries
when actual data changes occur in the fhir_endpoints_info table. For UPDATE operations, the
trigger compares all significant fields between the old and new versions of a record using the IS
DISTINCT FROM operator and only creates a history entry when differences are detected. This

optimization significantly reduces the need for pruning by preventing duplicate entries at the
source.

The pruning algorithm will remove any consecutive duplicate entries that may still exist in the
fhir_endpoint_info_history table. A fhir_endpoint_info_history entry is considered a
duplicate if there is an older consecutive entry that has the same stored information for the
endpoint's TLS version, MIME types, and SMART response, and if the newer entry's stored
Capability Statement only differs by fields included in a list of ignored fields, such as the date
field. If a fhir_endpoint_info_history entry is found to be a duplicate of an older consecutive
entry, it is deleted from the table, and this continues until only the oldest of the consecutive
duplicated entries remains. Before deleting any validation entries, the algorithm checks if the
validation ID exists in the current fhir_endpoints_info table to avoid removing data that might
still be in use.

This combined approach of history triggers and regular pruning provides an optimal balance
between data preservation and storage efficiency. The system maintains a comprehensive record
of meaningful changes to endpoints while eliminating redundant data, allowing Lantern to
effectively track how each endpoint has changed over long periods of time.

 5

9

Appendix A Abbreviations and Acronyms

The list of abbreviations/acronyms includes all abbreviations, initialisms, and acronyms listed in
the document.

Table 9. Appendix Terms and Definitions

Term Definition

API Application Programming Interface

CHPL Certified Health IT Product List

CMS Centers for Medicare and Medicaid Services

CSV Comma-Separated Values

FHIR Fast Healthcare Interoperability Resources

HTTP HyperText Transfer Protocol

ASTP Assistant Secretary for Technology Policy/Office of the National
Coordinator for Health Information Technology (hereafter ASTP)

URL Uniform Resource Locator

	1 Endpoint Data
	2 Developer Data
	3 Software Product Data
	4 Data Validations
	5 Linking Mechanisms
	5.1 Linking Endpoints to Developers

	6 Query Intervals
	7 Endpoint Info History Pruning
	Appendix A Abbreviations and Acronyms

